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Abstract 

This paper describes an integrated system for 
coordinating multiple rover behavior with the 
overall goal of collecting planetary surface data. 
The MISUS system combines techniques from 
planning and scheduling with machine learning to 
perform autonomous scientific exploration with 
cooperating rovers. A distributed planning and 
scheduling approach is used to generate efficient, 
multi-rover coordination plans, monitor plan 
execution, and perform re-planning when 
necessary. A machine learning clustering 
component is used to deduce geological 
relationships among collected data and select new 
science activities. A key concept promoted by this 
system is the use of goal interdependency 
information to perform plan optimization and 
increase the value of collected science data. We 
discuss how we represent and reason about goal 
dependency and utility information in our planning 
system and explain how this information can 
change dynamically during system use. We show 
through experimental results that our approach 
significantly increases overall plan quality versus a 
standard approach that treats goal utilities 
independently.  

1  Introduction 
NASA recently demonstrated that mobile robotic craft 
are a viable and extremely useful option for exploring 
the surface of other planets. The Mars Exploration 
Rovers (MER) have already gathered valuable scientific 
data that will be used to answer many questions about 
the Martian terrain. Future missions are being planned 
to send additional robotic explorers to Mars as well as to 
the moon and outer planets (JPL, 2004). Rover teams 
will also be an important component to any manned 
mission to Mars, both in performing science activities 
and building and maintaining necessary structures. In 
order to enable certain types of activities and to 
significantly increase overall science return, many of 
these future missions will require larger sets of rovers. 
These rovers will need to behave in a coordinated 
fashion where each rover accomplishes a subset of the 
overall mission goals and shares acquired information 

with other rovers and mission personnel. Furthermore, a 
key aspect of these missions will be highly autonomous 
rovers that can efficiently work together and require 
only limited communication with scientists and 
engineers on Earth. These rovers will be able to make 
many decisions on their own as to what new science 
data should be collected and how to perform the data 
gathering process. 
 The Multi-rover Integrated Science Understanding 
System (MISUS) provides an approach for 
autonomously achieving planetary science goals using 
multiple robotic explorers (Estlin, et al., 1999). This 
system integrates techniques for machine learning and 
data analysis with those for planning and scheduling to 
enable autonomous multi-rover coordination. Steps 
performed by the system include analyzing science data, 
evaluating what new science observations to perform, 
and deciding how to successfully perform them. 
Requested science observations are handled by a 
distributed planning and scheduling system which is 
responsible for delegating goals to rovers, achieving as 
many high priority science observations as possible 
given resource and operation constraints, and sharing 
information between rovers on related goals. This 
system is also integrated with a simulation environment 
that can model different planetary terrains and the 
results of science data observations within them.  
 A key feature of MISUS is its ability to reason about 
interdependent science observations. Most planning 
systems allow only simple, static dependencies to be 
defined among goals where these dependencies remain 
constant between different problems. However, in many 
domains, including space and planetary exploration, 
goals can be related through detailed utility models that 
significantly change from problem to problem. For 
instance, in one problem a particular goal’s utility may 
increase if other related goals can be achieved. In 
another problem, this utility increase may differ or 
actually decrease if the same combination of goals is 
achieved. We consider these types of goals to be 
interdependent and have implemented a methodology 
for representing and reasoning about them and their 
relevant utilities (Estlin and Gaines, 2002). We have 
also designed our distributed planning system to 
specifically handle this type of information when both 
formulating and executing plans.   



 The remainder of this paper is organized as follows. 
We begin by giving an overview of the full MISUS 
system. Next, we will further describe our distributed 
planning approach as well as our approach to handling 
interdependent science goals. We then present the 
results of a set of experiments designed to test the 
benefit our approach and how well it handles 
interdependent goal information. In the final sections, 
we discuss related work and present our conclusions.  

2  MISUS Overview 
The MISUS system is comprised of three major 
components: 
 
• Data Analysis: A machine-learning system that 

creates a distribution model of the different rock 
types from the observed terrain. A clustering 
approach is used that employs an objective function 
for inferring geological relationships among data. 
This component also contains a prioritization 
algorithm that suggests new prioritized science 
observations to best increase the accuracy of its 
learned model. 

• Distributed Planning and Scheduling: A 
distributed planning and scheduling system that 
produces rover-operation plans to achieve science 
goals. Planning is divided between a central 
planner, which creates a global plan for all rovers, 
and a distributed set of planners, which create 
detailed operation plans for individual rovers. 
Planning is continuous where plans are monitored 
during execution and re-planning is performed 
when necessary.  

• Environment Simulation: A multiple rover 
simulator that models different geological 
environments and rover-science operations within 
them. The simulator manages science data, tracks 
rover operations within the terrain, and reflects 
readings by rover science instruments. Currently, 
two types of instrument data are supported: visual 
texture data, which can be produced from rover 
camera images, and spectral data, which can be 
produced using a boresighted spectrometer. 

 
As shown in Figure 1, MISUS operates in a closed-loop 
fashion where the data analysis system can be seen as 
driving the exploration process based on its current 
model of the environment. Data gathered by each rover 
is used in a clustering algorithm to model the 
distribution of rocks according to their mineralogical 
composition and locations. Using this model, a 
prioritization algorithm generates new science goals 
based on their scientific value and ability to improve 
model accuracy. For example, if only limited data has 

been collected on a certain rock class, the algorithm 
may suggest new observations for that type of rock. 
New science goals are passed to the distributed planning 
system, which assigns goals to rovers in a way that 
minimizes required traverse distance and resources. A 
set of actions is produced for each rover that achieves 
the most valuable subset of goals given rover resource 
and operation constraints. During plan execution, the 
planning system continually monitors plan status. Re-
planning can be used to repair or modify plans if 
unexpected events occur. Science goals may also be re-
assigned to other rovers dynamically if the currently 
assigned rover can no longer achieve them. 
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Figure 1: MISUS Closed-Loop Data Flow 

 Currently we are applying MISUS to a planetary 
science application, which was designed through 
collaboration with JPL geologists and represents an 
example of how multiple rovers could investigate new 
areas of Martian (or other planetary) terrain. The 
primary science objective given to MISUS is to evaluate 
the distribution of rocks over a particular area of terrain. 
A team of three rovers is used where each rover has a 
camera and spectrometer to collect data. Rockfields are 
generated in our environment simulator, which 
maintains information on rock types, sizes and 
locations. Science goals consist of taking panoramic or 
point (i.e., local) measurements with each instrument. 
Goals are also given utilities that reflect their overall 
scientific value. Each rover is assumed to have a 
standard set of onboard resources and sensors, such as a 
solar panel and battery for power, memory to hold 
science data, and antennas that allow communication 
with Earth and/or other rovers. Note that the overall 
MISUS architecture could be used for many different 
science objectives. What drives the science process is 
the underlying model the data analysis system is tasked 
to learn. Other models could also be applied such as 
searching for a particular type of mineral composition or 
determining what process formed an area of terrain 
(e.g., volcanic, fluvial). 
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3  Planning and Execution for Multiple 
Rovers 
To produce and coordinate plans for a team of rovers, 
we have developed a distributed planning system that 
enables plans at different abstraction levels to be 
continually updated with current goal, resource and state 
information. It also enables science goals to be 
dynamically redistributed to the most appropriate rover 
based on current conditions. As shown in Figure 2, our 
system is comprised of a central planner, which 
coordinates plans among rovers, and an onboard planner 
for each rover, which creates and manages detailed 
operation plans for that rover. New science goals are 
given to the central planner, which can be located on 
either a lander or one of the rovers. This planner creates 
a global plan for the rover team and is responsible for 
distributing goals among rovers. The central  planner 
has limited knowledge of rover resources and states, 
which it uses to divide goals in an attempt to minimize 
overall traverse distance. Each individual rover planner 
is responsible for creating its own detailed operations 
plan, which ensures no operation or resource constraints 
will be violated. This distributed framework was chosen 
due to its ability to encourage globally optimal plans 
while still operating under limited communication. 
MISUS was designed to handle rover teams where the 
amount of communication between team members can 
vary. In some applications rovers may all operate in a 
general area where communication is relatively 
inexpensive, e.g., several rovers working in close range 
to build a structure or habitat. In other applications 
rovers may be out of communication for varying or long 

periods of time, e.g., surveying a large terrain area that 
has hills or large rocky areas that can obstruct 
communication. 
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Figure 2: Distributed Planning System Architecture 

 
3.1 Continuous Planning  
The CASPER continuous planner (Chien, et al., 2000) is 
used as the base system for both the central and 
individual rover planners. CASPER was developed to 
address dynamic planning and scheduling where plans 
can be continually modified based on changing state and 
goal information. Unlike batch planners, where each 
plan must be created from scratch, CASPER continually 
updates its plan based on new information. When an 
unexpected event occurs, CASPER can quickly modify 
the plan to handle the new event while still achieving its 
objectives. CASPER’s main components include: 
 
• An expressive modeling language to allow the user 

to easily represent different domains. 
• A constraint management system for representing 

and maintaining domain operability and resource 
constraints. 

• A set of search strategies and repair heuristics 
• A temporal reasoning system for representing and 

maintaining temporal constraints. 
• An optimization system that allows users to define 

objective functions and preferences. 
• A graphical interface for visualizing plans as well 

as predicted effects on resources and states. 
• A real-time system that monitors plan execution 

and modifies the current plan based on activity, 
state and resource updates. 
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CASPER takes as input a set of science and engineering 
goals and automatically generates an activity sequence 
that achieves the input goals. One of the primary search 
algorithms used to produce a valid sequence is iterative 
repair (Zweben, et al., 1994), which attacks plan 
conflicts individually. Conflicts occur when a plan 
constraint has been violated and can be temporal or 
involve a resource or state. Conflicts are resolved by 
performing one or more schedule modifications, such as 
moving, adding or deleting activities. An example of a 
conflict would be a rover that is in the incorrect location 
for a scheduled science observation. Resolving this 
conflict typically involves adding a new drive command 
to send the rover to the designated target location.  
 In MISUS, CASPER is used to provide planning and 
re-planning capabilities for the central and individual 
rover planners. For the central planner, CASPER creates 
an abstract plan that divides goals up among rovers and 
monitors goal execution status. To make goal 
assignments that best use rover resources, the central 
planner uses a set of Multiple Traveling Salesman 
Problem (MTSP) search heuristics, which encourage 
plans that minimize overall traverse distance. The 
central planner also monitors goal achievability during 
plan execution. If a goal cannot be achieved by a 
particular rover, the central planner may choose to 
dynamically reassign the goal to another rover or delete 
the goal if it deems it unachievable.  

For the individual rover planners, CASPER creates a 
detailed execution plan using TSP heuristics and 
relevant constraints to order science targets, and then 
monitors that plan and its effect on rover states and 
resources. For example, it continually monitors 
information on states such as rover position, resources 
such as power, and execution status for  plan activities. 
If the plan does not proceed as expected, CASPER can 
iteratively re-plan to accommodate any unexpected 
events. These events could simply be activities finishing 
early or problems that may cause plan conflicts such as 
an unexpected obstacle blocking the rover’s path or a 
science activity taking more power than expected. 
Currently we use a rover hardware simulator that 
models operations of different JPL rovers. This 
simulator can be used to randomly cause unexpected or 
faulty behavior during plan execution.  

For this application, planning goals correspond to 
prioritized science observations for taking images or 
spectrometer measurements, which will be explained in 
more detail in the next section. The final plan for each 
rover is a sequence of commands, which typically 
includes drive operations to different locations, specific 
instrument operations at those locations, and 
communication operations. Science and drive activities 
require a varying amount of power and time depending 
on parameters such as the distance being driven or the 
science operation being performed. Science activities 
also require different amounts of memory for storing 
gathered data. A number of different resource and state 
constraints are modeled. Each rover has a limited 

amount of available power and memory onboard. There 
is a limited time window (or horizon) each day within 
which activities can be scheduled. Each rover must also 
perform a communication activity each day within 
certain time constraints. Individual rover planners are 
aware of all of these constraints. The central planner is 
primarily aware of science operations and their related 
constraints. Rover planners also receive a number of 
state and resource updates from the underlying rover 
control system. These updates include current status on 
power and memory available, rover estimated position, 
and the success or failure of executed drive, science, 
and communication activities.  
 
3.2 Distributed Communication 
As shown in Figure 2, several pieces of information are 
communicated between the different planners. First, the 
central planner sends new goal assignments to the 
individual rovers. Second, the individual rover planners 
broadcast information on their goal execution status to 
other rover planners as well as the central planner. 
These status updates relay information such as whether 
a rover can no longer achieve a particular goal (and thus 
is releasing it back to the central planner) and what time 
the goal is scheduled to occur. As mentioned previously, 
if a rover has shed a goal, the central planner can 
attempt to reassign it. Each rover planner uses 
information about the goals that have been assigned to 
other rovers to evaluate the quality of its own current 
plan and chosen goal set. Our plan optimization 
approach uses this information and is explained in more 
detail in the next section.  

To provide a communication mechanism between 
planners, we have adopted the Shared Activity 
Coordination (SHAC) framework (Clement and Barrett, 
2003), which provides generic capabilities for 
continually coordinating multiple agents and for rapidly 
designing and implementing coordination protocols to 
govern the communication process. Information on 
goals is communicated between planners using SHAC’s 
shared activity model, which captures the information 
that multiple agents must share, including control 
mechanisms for changing that information. For MISUS, 
SHAC enables goal parameter information, such as 
duration, start time, target position, and memory 
required, to be shared among planners. SHAC coord-
ination protocols are also used to signal to the master 
when goals have been shed by a particular rover and 
thus can be re-assigned to a new rover.  

Other communication constraints can also be 
represented in SHAC. Currently in MISUS, goal 
information is communicated between planners as soon 
as available. However, if communication was more 
restrictive, the system could easily be modified to only 
communicate information during certain time windows. 
The architecture is designed to allow planning and 
execution to proceed whether or not current data can 
always be broadcast.  
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4  Interdependent Planning Goals 
A unique feature of our system is its ability to represent 
and reason about interdependent planning goals. A 
limitation of most planning techniques is that they 
define relationships between input goals in a simple, 
static manner, which cannot be easily adjusted for 
different problem situations. In many domains, goals 
can be related in complex and varying ways that are best 
represented through utility metrics. These metrics, 
however, cannot always be included as part of a 
standard domain definition, since they are often 
dependent on current data or state and can vary widely 
from problem to problem.  

Many planning systems allow you to define utility 
information that represents an overall plan quality or 
score. For examples, goals may be assigned priorities 
that help a planner decide what goals to try to achieve 
first. Other general metrics may also be defined, such as 
minimizing makespan, avoiding missed deadline costs, 
or minimizing the usage of a particular resource 
(Williamson and Hanks, 1994; Joslin and Clements, 
1999; Rabideau, et al., 2000). Most planning systems 
also allow you to define static dependencies between 
goals. For instance, two goals could be related in a 
domain model, through the decomposition of a parent 
goal, or through pre- or post-conditions. However, in all 
these approaches, goal relationships and utility metrics 
are pre-defined in the domain description or an 
objective function and typically remain constant 
between problem instances. Furthermore, it is difficult 
to define utility metrics that involve specific goal 
instances as opposed to general quality concepts that 
apply to a certain class of goals (e.g., increasing the 
number of orders filled). No current planning systems 
enable dynamic dependencies among goals, i.e., 
dependencies that significantly vary from problem to 
problem and thus must be defined as part of the problem 
specification instead of in the original domain 
description or model. When planning for rover 
missions, goals are often dictated by science data that 
has just been collected and/or what new science 
opportunities are available. Furthermore, there are many 
situations where the value of a science goal will be 
changed if other related science goals can be achieved. 
For instance, collecting images of a particular rock from 
different angles and distances often increases the value 
of all images taken of that rock since a better overall 
analysis of the rock can be performed.   

The MISUS distributed planning system provides a 
method for handling interdependent planning goals 
while performing plan optimization. In this approach, 
interdependencies between goals can be formulated 
dynamically and provided to the planning system as part 
of the goal input. The central planner and all local rover 
planners can then reason about these dependencies and 
incorporate them into the objective function they use to 
rate plan quality and direct their search process. To 
implement our approach, we have extended the base 

optimization framework already available in CASPER 
(Rabideau, et al., 1999). We have also tested our 
approach on a series of problems based on the 
previously described scenario of rovers performing a 
rock distribution survey of the surrounding terrain area.  

 
4.1 Interdependent Goal Representation and 
Objective Function 
To represent a goal’s value, we have extended a typical 
utility representation where goals can have individual 
rewards representing their importance, so that complex 
interdependencies and their relevant utilities can be 
represented and used by a planning system. Furthermore 
these interdependencies and utility values can change 
between problem specifications without requiring any 
changes to the planning domain model. In our 
representation a list of goals (g1, g2, …, gn) and goal 
combinations (c1, c2, …, cm) are provided to the 
planning system, where each goal combination ci 
consists of a tuple of goals <gi, gj, …, gk>. For each goal 
and for each goal combination there is an associated 
weight indicating the value that will be added to the 
plan if the plan includes those goals. This representation 
allows us to express singleton goal values, that is a goal 
whose contribution to the plan does not change as other 
goals are added, and any n-ary goal relationship to 
indicate the value that combination of goals adds.  
 We currently use a simple objective function to 
calculate the plan quality with respect to its achieved 
goals.  Let G be the set of goals that occur in the plan. 
The value of plan P is then give by Equation 1. This 

function sums up the values of all goals that occur in the 
plan along with the weight for each goal combination, 
where all named goals appear in the plan. 
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Equation 1: Objective function for calculating plan  
utility when using interdependent goals 

 
4.2 Optimization Approach 
To use the above objective function, we have also 
provided an improvement heuristic that can suggest 
what changes CASPER should make to the plan to 
increase the score. To create and optimize a plan we use 
a random hill-climbing search with restart. First, a plan 
is created that achieves any mandatory goals or 
activities that must be added to the plan. We then 
perform a series of optimization steps where each step 
consists of i iterations. At each iteration, if there are no 
conflicts in the plan, we use an improvement heuristic to 
suggest the next goal to add. If there are conflicts, we 
perform an iteration of repair. Whenever we have a 
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Goal Reward 
A: Long-Range Image of a Rock 
B: Close-Up Image of a Rock 
C: Close-Up Spectrometer Read  
of a Rock 

Rock + 11 
Rock + 6 
Rock + 1 

 
Table 1: Individual Goals and Rewards 

Goal Combination Reward 
<Goal A, Goal B> 
<Goal A, Goal C> 
 
<Goal B, Goal C> 

(Rew(A) + Rew(B))*1.75 
(Rew(A) + Rew(C))*2.25, 90% 
(Rew(A) + Rew(C))*10.0, 10% 
(Rew(B) + Rew(C))*1.25 

 
Table 2: Goal Interdependencies and Rewards 

conflict-free plan, if its score is the best seen so far, we 
record its point in the search space and begin the next 
optimization step. This approach protects against the 
possibility of adding a goal to the plan that cannot be 
solved. 
 To select the next goal to add during this process, we 
use a simple, greedy improvement heuristic that 
considers all goals and picks the one that would lead to 
the highest score if it were added to the plan.  We also 
include an element of randomness to avoid repeatedly 
adding an unachievable goal. With probability 1 – ε we 
add the highest scoring goal, otherwise a goal is picked 
at random.  

5  Evaluating Planning Performance with 
Interdependent Goals 
 
5.1 Testing Methodology 
We performed a series of experiments to evaluate 
whether or not explicitly taking into account goal 
interdependences during optimization would 
significantly improve the quality of the overall team 
plan. We expected to see some improvement over a 
system that did not use goal interdependences, but were 
not sure if the improvement in quality would be worth a 
potential increase in time to produce the plans. For these 
tests we compared our distributed version of CASPER 
with support for interdependent goals (which we will 
refer to as CASPER+IDGS) to two other distributed 
versions of CASPER: CASPER+Random and 
CASPER+SimpleReward. All three versions used the 
randomized hill-climbing algorithm described in the 
previous section. The only difference is in how each of 
the three selects the next goal to add to the plan. 
CASPER+IDGS uses the objective function from 
Equation 1 to pick the next goal. CASPER+Random 
simply selects a goal at random without considering 
rewards.  Finally, CASPER+SimpleReward uses an 
objective function that looks at individual goal rewards 
without considering goal interdependencies. 
 We ran each distributed system on a set of generated 
problems from the previously explained Mars 
exploration domain. For these particular tests, we did 
not use the data analysis component to generate goals, 
but instead used a random problem generator to produce 
problems of varying degrees of difficulty. In particular, 
problems varied in the number and location of the 
science goals, as well as the size of the terrain area to be 

explored. Table 1 shows the types of goals that are 
given to the planner along with the possible rewards for 
each individual goal. The importance of an individual 
rock is chosen randomly from the range 1-14. Each 
problem specification contains a set of (optgoals to take 
images and spectrometer measurements of particular 
rocks in the selected area. Problems ranged in size from 
30 to 90 different goals to examine 10 to 30 rocks in the 
surrounding terrain. The rovers are given 2 Martian 
days to complete these goals. Due to domain resource 
and temporal constraints, most of the generated 
problems are too large to fully complete. Thus the 
planning system will have to take into account the 
different goal utilities to determine which subset of 
goals to achieve. 
 Each problem description also included a randomly 
generated set of goal interdependences, which were 
based on preferences derived from conversations with 
planetary geologists and represent the type of utility 
values considered by human experts. Table 2 shows the 
goal combinations used for the experiments and the 
associated rewards. To increase the variance among 
goal combinations, we used two different factors for 
computing the value for one of the goal pairs (pair A 
and C). A certain percentage of the time the rewards for 
this pair was significantly increased. Finally, for a given 
rock, each of the three goal combinations is removed 
with probability 0.5. 
 We generated a set of 30 problems and ran each 
version of distributed CASPER on each problem 5 
times. The systems were run on a Linux 3.06GHz P4 
workstation with 1GB of RAM. To run tests in a 
reasonable time frame, we ran each planner in a batch 
mode where the planners were synchronized after each 
optimization session. This allows planners to still 
periodically communicate status information and for the 
central planner to re-assign goals to another rover when 
shed by one rover.  
 
5.2 Results 
At the end of each optimization step we recorded the 
current plan score based on the objective function from 
Equation 1. We also recorded several other statistics, 
including the number of seconds spent during each 
optimization step, the current number of goals in the 
plan, and the cumulative traverse distance required by 
the current plan. 
 Figures 3-5 present the results from these runs. Figure 
3 shows the objective function scores and that 
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CASPER+IDGS outscores both the other approaches. In 
fact, CASPER+IDGS shows a statistically significant 
improvement over both approaches at all but the first 
few optimization steps. Figure 4 shows that for the 
majority of data points, CASPER+IDGS added fewer 
goals to the plan. This factor is important because it 
shows that a higher score can be achieved using fewer 
goals. Note, that none of the planners were able to 
achieve all the goals and in such cases it becomes 
particularly important to achieve the higher quality 
subset. Another gathered statistic (not shown in a 
figure) was the average traverse distance required by 
each plan. These results showed that the plans created 
by CASPER+IDGS required the rovers to travel up to 
15% shorter distances than the other planners, while still 
achieving a higher quality plan. 
 It is also important to note that CASPER+IDGS’s 
biggest improvements in performance occur in the early 
optimization steps. Thus, if the planner is under tight 
time constraints, using CASPER+IDGS will allow the 
planning system to find a much higher quality set of 
goals. This feature is especially important in real-world 
problems where planning time can be tightly bounded.  
 Figure 5 shows that reasoning about interdependent 
goal values does not require additional planning time. 
This benefit is important when a planner is given more 
goals than it can achieve as well as when the planner is 
under time constraints and may not have enough time to 
plan for all its goals (even if achieving all goals is 
feasible).  

6  Related Work 
Many cooperative robotic systems use reactive 
techniques to coordinate robot behavior (Mataric, 2003; 
Parker, 1998; Huntsberger, 2003). These systems have 
been shown to exhibit low-level cooperative behavior in 
both known and noisy environments. However, they 
have not been shown useful for mission planning where 

a set of high-level goals must be achieved in a 
predictable manner and while obeying a series of 
resource and state constraints. 

 
     Figure 3: Objective Function Score                                       Figure 4: Number of Goals Achieved 

 Some systems have used planning techniques to 
determine robot behavior. One example is FIRE 
(Goldberg, et al., 2002), which coordinates actions of 
multiple robots at several layers of abstraction. The top 
planning layer uses a market-based strategy to distribute 
tasks among robots, where robot travel time is the 
primary measure of cost. Another example is 
GRAMMPS (Brummit & Stentz, 1988), which has a 
central planner and a low-level planner on each robot, 
however does not consider multiple resources or 
exogeneous events. Our design has some similarities to 
teamwork approaches (Tambe, 1997), where the central 
planner is the leader and rover planners are followers, 
however, in MISUS each team member can fully re-plan 
based on current goal and resource knowledge. 
Furthermore, none of these techniques consider 
information on interdependent goals or are integrated 
with a data analysis system to provide new goals. 
 Work in planning optimization has used utility 
models to improve on static quality measures, such as 
missed deadlines or minimizing resource usage 
(Williamson and Hanks, 1994; Joslin, 1999; Rabideau 
2000). Our approach, however, allows for the 
representation of utility for specific goal combinations 
that can change from problem to problem. The goal 
combinations used in this paper could be encoded into a 
Markov Decision Process (Boutilier, et al., 1999), 
however MDPs have yet to be demonstrated on 
problems of significant size in domains with time and 
resource constraints. 
 Previous work in decision analysis has looked at 
decision making with multiple objectives (Keeney and 
Raiffa, 1993) enabling one to develop preferential 
structures over decision outcomes.  Our representation 
of goal interdependences is a simple type of preference 
structure that allows the planner to select among 
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alternate actions. In the future, we plan to incorporate 
more results from decision analysis to support more 
complex goal relations and uncertainty about goal pay-
off. 

7  Conclusions 
This paper presents an approach for coordinating 
multiple rovers in achieving planetary science goals. 
The system integrates techniques from planning and 
scheduling with machine learning to autonomously 
analyze, request and obtain new science data. An 
important feature of our system is its ability to represent 
and reason about interdependent science goals. We have 
shown how this information is used in our distributed 
planning system and presented a set of experimental 
results that show how this approach can significantly 
improve plan quality. 
 In future work, we plan to apply the full MISUS 
system to other areas of planetary geology and 
exploration. In particular, we would like to expand the 
system to cover the testing of particular hypotheses or 
the handling of more closely coordinated tasks such as 
science observations that require more than one rover to 
execute. We also plan to consider more complex goal 
interdependencies including relations among more than 
two goals, relations in which only so many of a certain 
set of goals should be achieved, and situations in which 
adding certain combinations of goals can decrease plan 
quality. Finally, though currently this system is operated 
only in simulation, we intend to ultimately test its 
capabilities using real rovers examining actual terrain 
features. 
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